• 奋斗者第三期《我和我的艾德莱斯》 2019-09-14
  • 太钢精准发力坚决完成好定点扶贫任务 2019-09-14
  • 专业态度决定培训质量职业技能升华就业品质——2014年重庆市人力资源开发培训中心职业技能培训类概览 2019-09-07
  • 妻子把3个牌友约到家里玩 3岁儿子 妈妈和好多叔叔玩亲亲 2019-09-07
  • 我相信“交警雨中护送高考生”是真,“交警雨中护送高考生”反被该高考生家长投诉是假。 2019-09-05
  • 南通如皋为应对督察“回头看”违法掩埋危险废物 2019-08-29
  • “一带一路”论坛 值得世界期待 2019-08-29
  • “拖稿”也自信 美女作家落落来渝聊新书 2019-08-20
  • 曾感动过无数人母亲节,陪妈妈一起看场电影吧 2019-08-20
  • 山西繁峙强化督办 全流程跟踪监督信访件 2019-08-16
  • 各地聚焦学习十九大精神--新疆频道--人民网 2019-08-16
  • 前5月新能源汽车延续高速增长态势 销量增141.6% 2019-08-12
  • 世界杯夜不眠 合肥万达乐园打造霸都球迷首选集结地 2019-08-12
  • [网连中国]赛龙舟 包粽子 办诗会……全国各地品民俗迎端午 2019-07-28
  • 新疆旅游推介会亮相北京 2019-07-09
  • 人工智能标准化白皮书(2018)—— 人工智能发展现状及趋势(3)

    免疫组化抗体神器

    好评必备! 免费下载

      3 人工智能发展现状及趋势
      依据参考框架中所涉及到的人工智能相关技术,本节重点介绍近二十年来人工智能领域关键技术的发展状况,包括机器学习、知识图谱、自然语言处理、计算机视觉、人机交互、生物特征识别、虚拟现实/增强现实等关键技术。
      3.1 人工智能关键技术
      3.1.1 机器学习
      机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心?;谑莸幕餮笆窍执悄芗际踔械闹匾椒ㄖ?,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
     ?。?)根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
      监督学习
      监督学习是利用已标记的有限训练数据集,通过某种学习策略/方法建立一个模型,实现对新数据/实例的标记(分类)/映射,最典型的监督学习算法包括回归和分类。监督学习要求训练样本的分类标签已知,分类标签精确度越高,样本越具有代表性,学习模型的准确度越高。监督学习在自然语言处理、信息检索、文本挖掘、手写体辨识、垃圾邮件侦测等领域获得了广泛应用。
      无监督学习
      无监督学习是利用无标记的有限数据描述隐藏在未标记数据中的结构/规律,最典型的非监督学习算法包括单类密度估计、单类数据降维、聚类等。无监督学习不需要训练样本和人工标注数据,便于压缩数据存储、减少计算量、提升算法速度,还可以避免正、负样本偏移引起的分类错误问题。主要用于经济预测、异常检测、数据挖掘、图像处理、模式识别等领域,例如组织大型计算机集群、社交网络分析、市场分割、天文数据分析等。
      强化学习
      强化学习是智能系统从环境到行为映射的学习,以使强化信号函数值最大。由于外部环境提供的信息很少,强化学习系统必须靠自身的经历进行学习。强化学习的目标是学习从环境状态到行为的映射,使得智能体选择的行为能够获得环境最大的奖赏,使得外部环境对学习系统在某种意义下的评价为最佳。其在机器人控制、无人驾驶、下棋、工业控制等领域获得成功应用。
     ?。?)根据学习方法可以将机器学习分为传统机器学习和深度学习。
      传统机器学习
      传统机器学习从一些观测(训练)样本出发,试图发现不能通过原理分析获得的规律,实现对未来数据行为或趋势的准确预测。相关算法包括逻辑回归、隐马尔科夫方法、支持向量机方法、K 近邻方法、三层人工神经网络方法、Adaboost算法、贝叶斯方法以及决策树方法等。传统机器学习平衡了学习结果的有效性与学习模型的可解释性,为解决有限样本的学习问题提供了一种框架,主要用于有限样本情况下的模式分类、回归分析、概率密度估计等。传统机器学习方法共同的重要理论基础之一是统计学,在自然语言处理、语音识别、图像识别、信息检索和生物信息等许多计算机领域获得了广泛应用。
      深度学习
      深度学习是建立深层结构模型的学习方法,典型的深度学习算法包括深度置信网络、卷积神经网络、受限玻尔兹曼机和循环神经网络等。深度学习又称为深度神经网络(指层数超过 3 层的神经网络)。深度学习作为机器学习研究中的一个新兴领域,由 Hinton 等人于 2006 年提出。深度学习源于多层神经网络,其实质是给出了一种将特征表示和学习合二为一的方式。深度学习的特点是放弃了可解释性,单纯追求学习的有效性。经过多年的摸索尝试和研究,已经产生了诸多深度神经网络的模型,其中卷积神经网络、循环神经网络是两类典型的模型。卷积神经网络常被应用于空间性分布数据;循环神经网络在神经网络中引入了记忆和反馈,常被应用于时间性分布数据。深度学习框架是进行深度学习的基础底层框架,一般包含主流的神经网络算法模型,提供稳定的深度学习 API,支持训练模型在服务器和 GPU、TPU 间的分布式学习,部分框架还具备在包括移动设备、云平台在内的多种平台上运行的移植能力,从而为深度学习算法带来前所未有的运行速度和实用性。目前主流的开源算法框架有 TensorFlow、Caffe/Caffe2、CNTK、MXNet、Paddle-paddle、Torch/PyTorch、Theano 等。
     ?。?)此外,机器学习的常见算法还包括迁移学习、主动学习和演化学习等。
      迁移学习
      迁移学习是指当在某些领域无法取得足够多的数据进行模型训练时,利用另一领域数据获得的关系进行的学习。迁移学习可以把已训练好的模型参数迁移到新的模型指导新模型训练,可以更有效的学习底层规则、减少数据量。目前的迁移学习技术主要在变量有限的小规模应用中使用,如基于传感器网络的定位,文字分类和图像分类等。未来迁移学习将被广泛应用于解决更有挑战性的问题,如视频分类、社交网络分析、逻辑推理等。
      主动学习
      主动学习通过一定的算法查询最有用的未标记样本,并交由专家进行标记,然后用查询到的样本训练分类模型来提高模型的精度。主动学习能够选择性地获取知识,通过较少的训练样本获得高性能的模型,最常用的策略是通过不确定性准则和差异性准则选取有效的样本。
      演化学习
      演化学习对优化问题性质要求极少,只需能够评估解的好坏即可,适用于求解复杂的优化问题,也能直接用于多目标优化。演化算法包括粒子群优化算法、多目标演化算法等。目前针对演化学习的研究主要集中在演化数据聚类、对演化数据更有效的分类,以及提供某种自适应机制以确定演化机制的影响等。
      3.1.2 知识图谱
      知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
      知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
      3.1.3 自然语言处理
      自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
     ?。?)机器翻译
      机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程?;谕臣频幕鞣敕椒ㄍ黄屏酥盎诠嬖蚝褪道敕椒ǖ木窒扌?,翻译性能取得巨大提升?;谏疃壬窬绲幕鞣朐谌粘?谟锏纫恍┏【暗某晒ττ靡丫韵殖隽司薮蟮那绷?。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
      目前非限定领域机器翻译中性能较佳的一种是统计机器翻译,包括训练及解码两个阶段。训练阶段的目标是获得模型参数,解码阶段的目标是利用所估计的参数和给定的优化目标,获取待翻译语句的最佳翻译结果。统计机器翻译主要包括语料预处理、词对齐、短语抽取、短语概率计算、最大熵调序等步骤?;谏窬绲亩说蕉朔敕椒ú恍枰攵运锞渥幼派杓铺卣髂P?,而是直接把源语言句子的词串送入神经网络模型,经过神经网络的运算,得到目标语言句子的翻译结果。在基于端到端的机器翻译系统中,通常采用递归神经网络或卷积神经网络对句子进行表征建模,从海量训练数据中抽取语义信息,与基于短语的统计翻译相比,其翻译结果更加流畅自然,在实际应用中取得了较好的效果。
     ?。?)语义理解
      语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着 MCTest 数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
      在数据采集方面,语义理解通过自动构造数据方法和自动构造填空型问题的方法来有效扩充数据资源。为了解决填充型问题,一些基于深度学习的方法相继提出,如基于注意力的神经网络方法。当前主流的模型是利用神经网络技术对篇章、问题建模,对答案的开始和终止位置进行预测,抽取出篇章片段。对于进一步泛化的答案,处理难度进一步提升,目前的语义理解技术仍有较大的提升空间。
     ?。?)问答系统
      问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
      自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算。
      3.1.4 人机交互
      人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术,以下对后四种与人工智能关联密切的典型交互手段进行介绍。
     ?。?)语音交互
      语音交互是一种高效的交互方式,是人以自然语音或机器合成语音同计算机进行交互的综合性技术,结合了语言学、心理学、工程和计算机技术等领域的知识。语音交互不仅要对语音识别和语音合成进行研究,还要对人在语音通道下的交互机理、行为方式等进行研究。语音交互过程包括四部分:语音采集、语音识别、语义理解和语音合成。语音采集完成音频的录入、采样及编码;语音识别完成语音信息到机器可识别的文本信息的转化;语义理解根据语音识别转换后的文本字符或命令完成相应的操作;语音合成完成文本信息到声音信息的转换。作为人类沟通和获取信息最自然便捷的手段,语音交互比其他交互方式具备更多优势,能为人机交互带来根本性变革,是大数据和认知计算时代未来发展的制高点,具有广阔的发展前景和应用前景。
     ?。?)情感交互
      情感是一种高层次的信息传递,而情感交互是一种交互状态,它在表达功能和信息时传递情感,勾起人们的记忆或内心的情愫。传统的人机交互无法理解和适应人的情绪或心境,缺乏情感理解和表达能力,计算机难以具有类似人一样的智能,也难以通过人机交互做到真正的和谐与自然。情感交互就是要赋予计算机类似于人一样的观察、理解和生成各种情感的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。情感交互已经成为人工智能领域中的热点方向,旨在让人机交互变得更加自然。目前,在情感交互信息的处理方式、情感描述方式、情感数据获取和处理过程、情感表达方式等方面还有诸多技术挑战。
     ?。?)体感交互
      体感交互是个体不需要借助任何复杂的控制系统,以体感技术为基础,直接通过肢体动作与周边数字设备装置和环境进行自然的交互。依照体感方式与原理的不同,体感技术主要分为三类:惯性感测、光学感测以及光学联合感测。体感交互通常由运动追踪、手势识别、运动捕捉、面部表情识别等一系列技术支撑。
      与其他交互手段相比,体感交互技术无论是硬件还是软件方面都有了较大的提升,交互设备向小型化、便携化、使用方便化等方面发展,大大降低了对用户的约束,使得交互过程更加自然。目前,体感交互在游戏娱乐、医疗辅助与康复、全自动三维建模、辅助购物、眼动仪等领域有了较为广泛的应用。
     ?。?)脑机交互
      脑机交互又称为脑机接口,指不依赖于外围神经和肌肉等神经通道,直接实现大脑与外界信息传递的通路。脑机接口系统检测中枢神经系统活动,并将其转化为人工输出指令,能够替代、修复、增强、补充或者改善中枢神经系统的正常输出,从而改变中枢神经系统与内外环境之间的交互作用。脑机交互通过对神经信号解码,实现脑信号到机器指令的转化,一般包括信号采集、特征提取和命令输出三个???。从脑电信号采集的角度,一般将脑机接口分为侵入式和非侵入式两大类。除此之外,脑机接口还有其他常见的分类方式:按照信号传输方向可以分为脑到机、机到脑和脑机双向接口;按照信号生成的类型,可分为自发式脑机接口和诱发式脑机接口;按照信号源的不同还可分为基于脑电的脑机接口、基于功能性核磁共振的脑机接口以及基于近红外光谱分析的脑机接口。
      3.1.5 计算机视觉
      计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
     ?。?)计算成像学
      计算成像学是探索人眼结构、相机成像原理以及其延伸应用的科学。在相机成像原理方面,计算成像学不断促进现有可见光相机的完善,使得现代相机更加轻便,可以适用于不同场景。同时计算成像学也推动着新型相机的产生,使相机超出可见光的限制。在相机应用科学方面,计算成像学可以提升相机的能力,从而通过后续的算法处理使得在受限条件下拍摄的图像更加完善,例如图像去噪、去模糊、暗光增强、去雾霾等,以及实现新的功能,例如全景图、软件虚化、超分辨率等。
     ?。?)图像理解
      图像理解是通过用计算机系统解释图像,实现类似人类视觉系统理解外部世界的一门科学。通常根据理解信息的抽象程度可分为三个层次:浅层理解,包括图像边缘、图像特征点、纹理元素等;中层理解,包括物体边界、区域与平面等;高层理解,根据需要抽取的高层语义信息,可大致分为识别、检测、分割、姿态估计、图像文字说明等。目前高层图像理解算法已逐渐广泛应用于人工智能系统,如刷脸支付、智慧安防、图像搜索等。
     ?。?)三维视觉
      三维视觉即研究如何通过视觉获取三维信息(三维重建)以及如何理解所获取的三维信息的科学。三维重建可以根据重建的信息来源,分为单目图像重建、多目图像重建和深度图像重建等。三维信息理解,即使用三维信息辅助图像理解或者直接理解三维信息。三维信息理解可分为,浅层:角点、边缘、法向量等;中层:平面、立方体等;高层:物体检测、识别、分割等。三维视觉技术可以广泛应用于机器人、无人驾驶、智慧工厂、虚拟/增强现实等方向。
     ?。?)动态视觉
      动态视觉即分析视频或图像序列,模拟人处理时序图像的科学。通常动态视觉问题可以定义为寻找图像元素,如像素、区域、物体在时序上的对应,以及提取其语义信息的问题。动态视觉研究被广泛应用在视频分析以及人机交互等方面。
     ?。?)视频编解码
      视频编解码是指通过特定的压缩技术,将视频流进行压缩。视频流传输中最为重要的编解码标准有国际电联的 H.261、H.263、H.264、H.265、M-JPEG 和 MPEG 系列标准。视频压缩编码主要分为两大类:无损压缩和有损压缩。无损压缩指使用压缩后的数据进行重构时,重构后的数据与原来的数据完全相同,例如磁盘文件的压缩。有损压缩也称为不可逆编码,指使用压缩后的数据进行重构时,重构后的数据与原来的数据有差异,但不会影响人们对原始资料所表达的信息产生误解。有损压缩的应用范围广泛,例如视频会议、可视电话、视频广播、视频监控等。
      目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
      3.1.6 生物特征识别
      生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
      生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。下面将对指纹识别、人脸识别、虹膜识别、指静脉识别、声纹识别以及步态识别等技术进行介绍。
     ?。?)指纹识别
      指纹识别过程通常包括数据采集、数据处理、分析判别三个过程。数据采集通过光、电、力、热等物理传感器获取指纹图像;数据处理包括预处理、畸变校正、特征提取三个过程;分析判别是对提取的特征进行分析判别的过程。
     ?。?)人脸识别
      人脸识别是典型的计算机视觉应用,从应用过程来看,可将人脸识别技术划分为检测定位、面部特征提取以及人脸确认三个过程。人脸识别技术的应用主要受到光照、拍摄角度、图像遮挡、年龄等多个因素的影响,在约束条件下人脸识别技术相对成熟,在自由条件下人脸识别技术还在不断改进。
     ?。?)虹膜识别
      虹膜识别的理论框架主要包括虹膜图像分割、虹膜区域归一化、特征提取和识别四个部分,研究工作大多是基于此理论框架发展而来。虹膜识别技术应用的主要难题包含传感器和光照影响两个方面:一方面,由于虹膜尺寸小且受黑色素遮挡,需在近红外光源下采用高分辨图像传感器才可清晰成像,对传感器质量和稳定性要求比较高;另一方面,光照的强弱变化会引起瞳孔缩放,导致虹膜纹理产生复杂形变,增加了匹配的难度。
     ?。?)指静脉识别
      指静脉识别是利用了人体静脉血管中的脱氧血红蛋白对特定波长范围内的近红外线有很好的吸收作用这一特性,采用近红外光对指静脉进行成像与识别的技术。由于指静脉血管分布随机性很强,其网络特征具有很好的唯一性,且属于人体内部特征,不受到外界影响,因此模态特性十分稳定。指静脉识别技术应用面临的主要难题来自于成像单元。
     ?。?)声纹识别
      声纹识别是指根据待识别语音的声纹特征识别说话人的技术。声纹识别技术通??梢苑治岸舜砗徒7治隽礁鼋锥?。声纹识别的过程是将某段来自某个人的语音经过特征提取后与多复合声纹模型库中的声纹模型进行匹配,常用的识别方法可以分为模板匹配法、概率模型法等。
     ?。?)步态识别
      步态是远距离复杂场景下唯一可清晰成像的生物特征,步态识别是指通过身体体型和行走姿态来识别人的身份。相比上述几种生物特征识别,步态识别的技术难度更大,体现在其需要从视频中提取运动特征,以及需要更高要求的预处理算法,但步态识别具有远距离、跨角度、光照不敏感等优势。
      3.1.7 虚拟现实/增强现实
      虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
      虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面?;袢∮虢<际跹芯咳绾伟盐锢硎澜缁蛘呷死嗟拇匆饨惺只湍P突?,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
      目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。
      3.1.8 人工智能技术发展趋势
      综上所述,人工智能技术在以下方面的发展有显著的特点,是进一步研究人工智能趋势的重点。
     ?。?)技术平台开源化
      开源的学习框架在人工智能领域的研发成绩斐然,对深度学习领域影响巨大??吹纳疃妊翱蚣苁沟每⒄呖梢灾苯邮褂靡丫蟹⒊晒Φ纳疃妊肮ぞ?,减少二次开发,提高效率,促进业界紧密合作和交流。国内外产业巨头也纷纷意识到通过开源技术建立产业生态,是抢占产业制高点的重要手段。通过技术平台的开源化,可以扩大技术规模,整合技术和应用,有效布局人工智能全产业链。谷歌、百度等国内外龙头企业纷纷布局开源人工智能生态,未来将有更多的软硬件企业参与开源生态。
     ?。?)专用智能向通用智能发展
      目前的人工智能发展主要集中在专用智能方面,具有领域局限性。随着科技的发展,各领域之间相互融合、相互影响,需要一种范围广、集成度高、适应能力强的通用智能,提供从辅助性决策工具到专业性解决方案的升级。通用人工智能具备执行一般智慧行为的能力,可以将人工智能与感知、知识、意识和直觉等人类的特征互相连接,减少对领域知识的依赖性、提高处理任务的普适性,这将是人工智能未来的发展方向。未来的人工智能将广泛的涵盖各个领域,消除各领域之间的应用壁垒。
     ?。?)智能感知向智能认知方向迈进
      人工智能的主要发展阶段包括:运算智能、感知智能、认知智能,这一观点得到业界的广泛认可。早期阶段的人工智能是运算智能,机器具有快速计算和记忆存储能力。当前大数据时代的人工智能是感知智能,机器具有视觉、听觉、触觉等感知能力。随着类脑科技的发展,人工智能必然向认知智能时代迈进,即让机器能理解会思考。
      3.2 人工智能产业现状及趋势
      人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。麦肯锡预计,到 2025 年全球人工智能应用市场规模总值将达到 1270 亿美元,人工智能将是众多智能产业发展的突破点。通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为核心业态、关联业态、衍生业态三个层次,如图 3 所示。
    人工智能标准化白皮书(2018)——人工智能产业现状及趋势
    图 3 人工智能产业生态图
      下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。
      3.2.1 智能基础设施
      智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。
     ?。?)智能芯片
      智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基于 FPGA 的半定制化芯片、全定制化 ASIC 芯片、类脑计算芯片(IBM TrueNorth)。另外,主要的人工智能处理器还有 DPU、BPU、NPU、EPU 等适用于不同场景和功能的人工智能芯片。
      随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求迫切增长,对 CPU 计算性能提升的需求超过了摩尔定律的增长速度。同时,受限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能芯片势在必行。未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构的芯片,二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到 2020年人工智能芯片全球市场规模将突破百亿美元。
     ?。?)智能传感器
      智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。智能传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如智能安防、智能家居、智能医疗等对传感器应用提出了不同的要求。未来,随着人工智能应用领域的不断拓展,市场对传感器的需求将不断增多,2020 年市场规模有望突破 4600 亿美元。未来,高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。
     ?。?)分布式计算框架
      面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。目前流行的分布式计算框架如 OpenStack、Hadoop、Storm、Spark、Samza、Bigflow 等。各种开源深度学习框架也层出不穷,其中包括 TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon 等等。
      3.2.2 智能信息及数据
      信息数据是人工智能创造价值的关键要素之一。我国庞大的人口和产业基数带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、分析、处理产生了众多的企业。目前,在人工智能数据采集、分析、处理方面的企业主要有两种:一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数据分析处理结果的需求方。
      3.2.3 智能技术服务
      智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。目前,从提供服务的类型来看,提供技术服务厂商包括以下几类:
     ?。?)提供人工智能的技术平台和算法模型。此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台之上,通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。
     ?。?)提供人工智能的整体解决方案。此类厂商主要针对用户或者行业需求,设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。
     ?。?)提供人工智能在线服务。此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性,为客户提供多类型的人工智能服务;从各类模型算法和计算框架的 API 等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。
      需要指出的是,上述三类角色并不是严格区分开的,很多情况下会出现重叠,随着技术的发展成熟,在人工智能产业链中已有大量的厂商同时具备上述两类或者三类角色的特征。
      3.2.4 智能产品
      智能产品是指将人工智能领域的技术成果集成化、产品化,具体的分类如表1 所示。
    表 1 人工智能的产品
    人工智能标准化白皮书(2018)——人工智能产业现状及趋势
      随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。
      3.2.5 人工智能行业应用
      人工智能与行业领域的深度融合将改变甚至重新塑造传统行业,本节重点介绍人工智能在制造、家居、金融、交通、安防、医疗、物流行业的应用,由于篇幅有限,其它很多重要的行业应用在这里不展开论述。
     ?。?)智能制造
      智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。智能制造对人工智能的需求主要表现在以下三个方面:一是智能装备,包括自动识别设备、人机交互系统、工业机器人以及数控机床等具体设备,涉及到跨媒体分析推理、自然语言处理、虚拟现实智能建模及自主无人系统等关键技术。二是智能工厂,包括智能设计、智能生产、智能管理以及集成优化等具体内容,涉及到跨媒体分析推理、大数据智能、机器学习等关键技术。三是智能服务,包括大规模个性化定制、远程运维以及预测性维护等具体服务模式,涉及到跨媒体分析推理、自然语言处理、大数据智能、高级机器学习等关键技术。例如,现有涉及智能装备故障问题的纸质化文件,可通过自然语言处理,形成数字化资料,再通过非结构化数据向结构化数据的转换,形成深度学习所需的训练数据,从而构建设备故障分析的神经网络,为下一步故障诊断、优化参数设置提供决策依据。
     ?。?)智能家居
      参照工业和信息化部印发的《智慧家庭综合标准化体系建设指南》,智能家居是智慧家庭八大应用场景之一。受产业环境、价格、消费者认可度等因素影响,我国智能家居行业经历了漫长的探索期。至 2010 年,随着物联网技术的发展以及智慧城市概念的出现,智能家居概念逐步有了清晰的定义并随之涌现出各类产品,软件系统也经历了若干轮升级。
      智能家居以住宅为平台,基于物联网技术,由硬件(智能家电、智能硬件、安防控制设备、家具等)、软件系统、云计算平台构成的家居生态圈,实现人远程控制设备、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性化生活服务,使家居生活安全、节能、便捷等。例如,借助智能语音技术,用户应用自然语言实现对家居系统各设备的操控,如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作;借助机器学习技术,智能电视可以从用户看电视的历史数据中分析其兴趣和爱好,并将相关的节目推荐给用户。通过应用声纹识别、脸部识别、指纹识别等技术进行开锁等;通过大数据技术可以使智能家电实现对自身状态及环境的自我感知,具有故障诊断能力。通过收集产品运行数据,发现产品异常,主动提供服务,降低故障率?;箍梢酝ü笫莘治?、远程监控和诊断,快速发现问题、解决问题及提高效率。
     ?。?)智能金融
      人工智能的飞速发展将对身处服务价值链高端的金融业带来深刻影响,人工智能逐步成为决定金融业沟通客户、发现客户金融需求的重要因素。人工智能技术在金融业中可以用于服务客户,支持授信、各类金融交易和金融分析中的决策,并用于风险防控和监督,将大幅改变金融现有格局,金融服务将会更加地个性化与智能化。智能金融对于金融机构的业务部门来说,可以帮助获客,精准服务客户,提高效率;对于金融机构的风控部门来说,可以提高风险控制,增加安全性;对于用户来说,可以实现资产优化配置,体验到金融机构更加完美地服务。人工智能在金融领域的应用主要包括:智能获客,依托大数据,对金融用户进行画像,通过需求响应模型,极大地提升获客效率;身份识别,以人工智能为内核,通过人脸识别、声纹识别、指静脉识别等生物识别手段,再加上各类票据、身份证、银行卡等证件票据的 OCR 识别等技术手段,对用户身份进行验证,大幅降低核验成本,有助于提高安全性;大数据风控,通过大数据、算力、算法的结合,搭建反欺诈、信用风险等模型,多维度控制金融机构的信用风险和操作风险,同时避免资产损失;智能投顾,基于大数据和算法能力,对用户与资产信息进行标签化,精准匹配用户与资产;智能客服,基于自然语言处理能力和语音识别能力,拓展客服领域的深度和广度,大幅降低服务成本,提升服务体验;金融云,依托云计算能力的金融科技,为金融机构提供更安全高效的全套金融解决方案。
     ?。?)智能交通
      智能交通系统(Intelligent Traffic System,ITS)是通信、信息和控制技术在交通系统中集成应用的产物。ITS 借助现代科技手段和设备,将各核心交通元素联通,实现信息互通与共享以及各交通元素的彼此协调、优化配置和高效使用,形成人、车和交通的一个高效协同环境,建立安全、高效、便捷和低碳的交通。例如通过交通信息采集系统采集道路中的车辆流量、行车速度等信息,信息分析处理系统处理后形成实时路况,决策系统据此调整道路红绿灯时长,调整可变车道或潮汐车道的通行方向等,通过信息发布系统将路况推送到导航软件和广播中,让人们合理规划行驶路线。通过不停车收费系统(ETC),实现对通过 ETC 入口站的车辆身份及信息自动采集、处理、收费和放行,有效提高通行能力、简化收费管理、降低环境污染。
      ITS 应用最广泛的地区是日本,其次是美国、欧洲等地区。中国的智能交通系统近几年也发展迅速,在北京、上海、广州、杭州等大城市已经建设了先进的智能交通系统;其中,北京建立了道路交通控制、公共交通指挥与调度、高速公路管理和紧急事件管理等四大 ITS 系统;广州建立了交通信息共用主平台、物流信息平台和静态交通管理系统等三大 ITS 系统。
     ?。?)智能安防
      智能安防技术是一种利用人工智能对视频、图像进行存储和分析,从中识别安全隐患并对其进行处理的技术。智能安防与传统安防的最大区别在于智能化,传统安防对人的依赖性比较强,非常耗费人力,而智能安防能够通过机器实现智能判断,从而尽可能实现实时地安全防范和处理。
      当前,高清视频、智能分析等技术的发展,使得安防从传统的被动防御向主动判断和预警发展,行业也从单一的安全领域向多行业应用发展,进而提升生产效率并提高生活智能化程度,为更多的行业和人群提供可视化及智能化方案。用户面对海量的视频数据,已无法简单利用人海战术进行检索和分析,需要采用人工智能技术作专家系统或辅助手段,实时分析视频内容,探测异常信息,进行风险预测。从技术方面来讲,目前国内智能安防分析技术主要集中在两大类:一类是采用画面分割前景提取等方法对视频画面中的目标进行提取检测,通过不同的规则来区分不同的事件,从而实现不同的判断并产生相应的报警联动等,例如:区域入侵分析、打架检测、人员聚集分析、交通事件检测等;另一类是利用模式识别技术,对画面中特定的物体进行建模,并通过大量样本进行训练,从而达到对视频画面中的特定物体进行识别,如车辆检测、人脸检测、人头检测(人流统计)等应用。
      智能安防目前涵盖众多的领域,如街道社区、道路、楼宇建筑、机动车辆的监控,移动物体监测等。今后智能安防还要解决海量视频数据分析、存储控制及传输问题,将智能视频分析技术、云计算及云存储技术结合起来,构建智慧城市下的安防体系。
     ?。?)智能医疗
      人工智能的快速发展,为医疗健康领域向更高的智能化方向发展提供了非常有利的技术条件。近几年,智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用。
      在辅助诊疗方面,通过人工智能技术可以有效提高医护人员工作效率,提升一线全科医生的诊断治疗水平。如利用智能语音技术可以实现电子病历的智能语音录入;利用智能影像识别技术,可以实现医学图像自动读片;利用智能技术和大数据平台,构建辅助诊疗系统。
      在疾病预测方面,人工智能借助大数据技术可以进行疫情监测,及时有效地预测并防止疫情的进一步扩散和发展。以流感为例,很多国家都有规定,当医生发现新型流感病例时需告知疾病控制与预防中心。但由于人们可能患病不及时就医,同时信息传达回疾控中心也需要时间,因此,通告新流感病例时往往会有一定的延迟,人工智能通过疫情监测能够有效缩短响应时间。
      在医疗影像辅助诊断方面,影像判读系统的发展是人工智能技术的产物。早期的影像判读系统主要靠人手工编写判定规则,存在耗时长、临床应用难度大等问题,从而未能得到广泛推广。影像组学是通过医学影像对特征进行提取和分析,为患者预前和预后的诊断和治疗提供评估方法和精准诊疗决策。这在很大程度上简化了人工智能技术的应用流程,节约了人力成本。
     ?。?)智能物流
      传统物流企业在利用条形码、射频识别技术、传感器、全球定位系统等方面优化改善运输、仓储、配送装卸等物流业基本活动,同时也在尝试使用智能搜索、推理规划、计算机视觉以及智能机器人等技术,实现货物运输过程的自动化运作和高效率优化管理,提高物流效率。例如,在仓储环节,利用大数据智能通过分析大量历史库存数据,建立相关预测模型,实现物流库存商品的动态调整。大数据智能也可以支撑商品配送规划,进而实现物流供给与需求匹配、物流资源优化与配置等。在货物搬运环节,加载计算机视觉、动态路径规划等技术的智能搬运机器人(如搬运机器人、货架穿梭车、分拣机器人等)得到广泛应用,大大减少了订单出库时间,使物流仓库的存储密度、搬运的速度、拣选的精度均有大幅度提升。
      3.2.6 人工智能产业发展趋势
      从人工智能产业进程来看,技术突破是推动产业升级的核心驱动力。数据资源、运算能力、核心算法共同发展,掀起人工智能第三次新浪潮。人工智能产业正处于从感知智能向认知智能的进阶阶段,前者涉及的智能语音、计算机视觉及自然语言处理等技术,已具有大规模应用基础,但后者要求的“机器要像人一样去思考及主动行动”仍尚待突破,诸如无人驾驶、全自动智能机器人等仍处于开发中,与大规模应用仍有一定距离。
     ?。?)智能服务呈现线下和线上的无缝结合
      分布式计算平台的广泛部署和应用,增大了线上服务的应用范围。同时人工智能技术的发展和产品不断涌现,如智能家居、智能机器人、自动驾驶汽车等,为智能服务带来新的渠道或新的传播模式,使得线上服务与线下服务的融合进程加快,促进多产业升级。
     ?。?)智能化应用场景从单一向多元发展
      目前人工智能的应用领域还多处于专用阶段,如人脸识别、视频监控、语音识别等都主要用于完成具体任务,覆盖范围有限,产业化程度有待提高。随着智能家居、智慧物流等产品的推出,人工智能的应用终将进入面向复杂场景,处理复杂问题,提高社会生产效率和生活质量的新阶段。
     ?。?)人工智能和实体经济深度融合进程将进一步加快
      党的十九大报告提出“推动互联网、大数据、人工智能和实体经济深度融合”,一方面,随着制造强国建设的加快将促进人工智能等新一代信息技术产品发展和应用,助推传统产业转型升级,推动战略性新兴产业实现整体性突破。另一方面,随着人工智能底层技术的开源化,传统行业将有望加快掌握人工智能基础技术并依托其积累的行业数据资源实现人工智能与实体经济的深度融合创新。
      3.3 安全、伦理、隐私问题
      历史经验表明新技术常常能够提高生产效率,促进社会进步。但与此同时,由于人工智能尚处于初期发展阶段,该领域的安全、伦理、隐私的政策、法律和标准问题值得关注。就人工智能技术而言,安全、伦理和隐私问题直接影响人们与人工智能工具交互经验中对人工智能技术的信任。社会公众必须信任人工智能技术能够给人类带来的安全利益远大于伤害,才有可能发展人工智能。要保障安全,人工智能技术本身及在各个领域的应用应遵循人类社会所认同的伦理原则,其中应特别关注的是隐私问题,因为人工智能的发展伴随着越来越多的个人数据被记录和分析,而在这个过程中保障个人隐私则是社会信任能够增加的重要条件。总之,建立一个令人工智能技术造福于社会、?;す诶娴恼?、法律和标准化环境,是人工智能技术持续、健康发展的重要前提。为此,本章集中讨论与人工智能技术相关的安全、伦理、隐私的政策和法律问题。
      3.3.1 人工智能的安全问题
      人工智能最大的特征是能够实现无人类干预的,基于知识并能够自我修正地自动化运行。在开启人工智能系统后,人工智能系统的决策不再需要操控者进一步的指令,这种决策可能会产生人类预料不到的结果。设计者和生产者在开发人工智能产品的过程中可能并不能准确预知某一产品会存在的可能风险。因此,对于人工智能的安全问题不容忽视。
      与传统的公共安全(例如核技术)需要强大的基础设施作为支撑不同,人工智能以计算机和互联网为依托,无需昂贵的基础设施就能造成安全威胁。掌握相关技术的人员可以在任何时间、地点且没有昂贵基础设施的情况下做出人工智能产品。人工智能的程序运行并非公开可追踪,其扩散途径和速度也难以精确控制。在无法利用已有传统管制技术的条件下,对人工智能技术的管制必须另辟蹊径?;谎灾?,管制者必须考虑更为深层的伦理问题,保证人工智能技术及其应用均应符合伦理要求,才能真正实现保障公共安全的目的。
      由于人工智能技术的目标实现受其初始设定的影响,必须能够保障人工智能设计的目标与大多数人类的利益和伦理道德一致,即使在决策过程中面对不同的环境,人工智能也能做出相对安全的决定。从人工智能的技术应用方面看,要充分考虑到人工智能开发和部署过程中的责任和过错问题,通过为人工智能技术开发者、产品生产者或者服务提供者、最终使用者设定权利和义务的具体内容,来达到落实安全保障要求的目的。
      此外,考虑到目前世界各国关于人工智能管理的规定尚不统一,相关标准也处于空白状态,同一人工智能技术的参与者可能来自不同国家,而这些国家尚未签署针对人工智能的共有合约。为此,我国应加强国际合作,推动制定一套世界通用的管制原则和标准来保障人工智能技术的安全性。
      3.3.2 人工智能的伦理问题
      人工智能是人类智能的延伸,也是人类价值系统的延伸。在其发展的过程中,应当包含对人类伦理价值的正确考量。设定人工智能技术的伦理要求,要依托于社会和公众对人工智能伦理的深入思考和广泛共识,并遵循一些共识原则:
      一是人类利益原则,即人工智能应以实现人类利益为终极目标。这一原则体现对人权的尊重、对人类和自然环境利益最大化以及降低技术风险和对社会的负面影响。在此原则下,政策和法律应致力于人工智能发展的外部社会环境的构建,推动对社会个体的人工智能伦理和安全意识教育,让社会警惕人工智能技术被滥用的风险。此外,还应该警惕人工智能系统作出与伦理道德偏差的决策。例如,大学利用机器学习算法来评估入学申请,假如用于训练算法的历史入学数据(有意或无意)反映出之前的录取程序的某些偏差(如性别歧视),那么机器学习可能会在重复累计的运算过程中恶化这些偏差,造成恶性循环。如果没有纠正,偏差会以这种方式在社会中永久存在。
      二是责任原则,即在技术开发和应用两方面都建立明确的责任体系,以便在技术层面可以对人工智能技术开发人员或部门问责,在应用层面可以建立合理的责任和赔偿体系。在责任原则下,在技术开发方面应遵循透明度原则;在技术应用方面则应当遵循权责一致原则。
      其中,透明度原则要求了解系统的工作原理从而预测未来发展,即人类应当知道人工智能如何以及为何做出特定决定,这对于责任分配至关重要。例如,在神经网络这个人工智能的重要议题中,人们需要知道为什么会产生特定的输出结果。另外,数据来源透明度也同样非常重要。即便是在处理没有问题的数据集时,也有可能面临数据中隐含的偏见问题。透明度原则还要求开发技术时注意多个人工智能系统协作产生的危害。
      权责一致原则,指的是未来政策和法律应该做出明确规定:一方面必要的商业数据应被合理记录、相应算法应受到监督、商业应用应受到合理审查;另一方面商业主体仍可利用合理的知识产权或者商业秘密来?;け酒笠档暮诵牟问?。在人工智能的应用领域,权利和责任一致的原则尚未在商界、政府对伦理的实践中完全实现。主要是由于在人工智能产品和服务的开发和生产过程中,工程师和设计团队往往忽视伦理问题,此外人工智能的整个行业尚未习惯于综合考量各个利益相关者需求的工作流程,人工智能相关企业对商业秘密的?;ひ参从胪该鞫认嗥胶?。
      3.3.3 人工智能的隐私问题
      人工智能的近期发展是建立在大量数据的信息技术应用之上,不可避免地涉及到个人信息的合理使用问题,因此对于隐私应该有明确且可操作的定义。人工智能技术的发展也让侵犯个人隐私(的行为)更为便利,因此相关法律和标准应该为个人隐私提供更强有力的?;?。已有的对隐私信息的管制包括对使用者未明示同意的收集,以及使用者明示同意条件下的个人信息收集两种类型的处理。人工智能技术的发展对原有的管制框架带来了新的挑战,原因是使用者所同意的个人信息收集范围不再有确定的界限。利用人工智能技术很容易推导出公民不愿意泄露的隐私,例如从公共数据中推导出私人信息,从个人信息中推导出和个人有关的其他人员(如朋友、亲人、同事)信息(在线行为、人际关系等)。这类信息超出了最初个人同意披露的个人信息范围。
      此外,人工智能技术的发展使得政府对于公民个人数据信息的收集和使用更加便利。大量个人数据信息能够帮助政府各个部门更好地了解所服务的人群状态,确保个性化服务的机会和质量。但随之而来的是,政府部门和政府工作人员个人不恰当使用个人数据信息的风险和潜在的危害应当得到足够的重视。
      人工智能语境下的个人数据的获取和知情同意应该重新进行定义。首先,相关政策、法律和标准应直接对数据的收集和使用进行规制,而不能仅仅征得数据所有者的同意;其次,应当建立实用、可执行的、适应于不同使用场景的标准流程以供设计者和开发者?;な堇丛吹囊?;再次,对于利用人工智能可能推导出超过公民最初同意披露的信息的行为应该进行规制。最后,政策、法律和标准对于个人数据管理应该采取延伸式?;?,鼓励发展相关技术,探索将算法工具作为个体在数字和现实世界中的代理人。这种方式使得控制和使用两者得以共存,因为算法代理人可以根据不同的情况,设定不同的使用权限,同时管理个人同意与拒绝分享的信息。
      本章节所涉及的安全、伦理和隐私问题是人工智能发展面临的挑战。安全问题是让技术能够持续发展的前提。技术的发展给社会信任带来了风险,如何增加社会信任,让技术发展遵循伦理要求,特别是保障隐私不会被侵犯是亟需解决的问题。为此,需要(制订)合理的政策、法律、标准基础,并与国际社会协作。在制订政策、法律和标准时,应当摆脱肤浅的新闻炒作和广告式的热点宣传,必须促进对人工智能技术产品更深层地理解,聚焦这一新技术给社会产生重大利益的同时也带来的巨大挑战。作为国际社会的重要成员,中国对保障人工智能技术应用在正确的道路上、基于正确的理由得到健康发展担负重要的责任。
      3.4 人工智能标准化的重要作用
      当今,经济全球化和市场国际化深入发展,标准作为经济和社会活动的主要技术依据,已成为衡量国家或地区技术发展水平的重要标志、产品进入市场的基本准则、企业市场竞争力的具体体现。标准化工作对人工智能及其产业发展具有基础性、支撑性、引领性的作用,既是推动产业创新发展的关键抓手,也是产业竞争的制高点。人工智能标准的先进与完善与否,关系到产业的健康发展、以及产品国际市场竞争力的强弱。
      美国、欧盟、日本等发达国家高度重视人工智能标准化工作。美国发布的《国家人工智能研究与发展策略规划》,欧盟发布的“人脑计划”,日本实施的“人工智能/大数据/物联网/网络安全综合项目”,均提出围绕核心技术、顶尖人才、标准规范等强化部署,力图抢占新一轮科技主导权。
      我国高度重视人工智能标准化工作。在国务院《新一代人工智能发展规划》中将人工智能标准化作为重要支撑保障,提出要“加强人工智能标准框架体系研究。坚持安全性、可用性、互操作性、可追溯性原则,逐步建立并完善人工智能基础共性、互联互通、行业应用、网络安全、隐私?;さ燃际醣曜?。加快推动无人驾驶、服务机器人等细分应用领域的行业协会和联盟制定相关标准”。工信部在《促进新一代人工智能产业发展三年行动计划(2018-2020 年)》中指出,要建设人工智能产业标准规范体系,建立并完善基础共性、互联互通、安全隐私、行业应用等技术标准;同时构建人工智能产品评估评测体系。
      我国虽然在人工智能领域虽然具备了良好基础,语音识别、视觉识别、中文信息处理等核心技术实现了突破,也具有巨大的应用市场环境,但整体发展水平仍落后于发达国家,在核心算法、关键设备、高端芯片、重大产品与系统等方面差距较大,适应人工智能发展的基础设施、政策法规、标准体系亟待完善。
      综上分析,更应重视人工智能标准化工作对于促进技术创新、支撑产业发展具有的重要引领作用:
     ?。ㄒ唬┍曜蓟ぷ饔欣诩涌烊斯ぶ悄芗际醮葱潞统晒?。现阶段人工智能技术发展迅速,市场上逐步出现了可规?;?、可商业化的产品和应用,需要以标准化的手段固化技术成果,实现快速创新推广;
     ?。ǘ┍曜蓟ぷ饔兄谔嵘斯ぶ悄懿泛头裰柿?。如市场上出现的人脸识别系统、智能音箱、服务机器人等产品,质量残次不齐,需要标准的统一规范,并配合以开展符合性测试评估的方式,提升产品和服务质量;
     ?。ㄈ┍曜蓟ぷ饔兄谇惺当U嫌没О踩?。例如自动驾驶领域的“电车难题”伦理难题、苹果手机指纹泄露用户隐私等问题,引起了人们的广泛关注。如何?;び没ㄒ媸悄训阋彩侵氐?,这需要通过建立以人为本的原则,制定相关安全标准规范,确保智能系统遵从并服务于人类伦理,并确保信息安全;
     ?。ㄋ模┍曜蓟ぷ饔兄谟旃娇诺娜斯ぶ悄懿瞪?。当前,行业巨头以开源算法、平台接口绑定等方式,打造自有深度学习框架等生态体系,造成用户数据信息较难迁移。这需要统一的标准实现厂商之间的互操作与协同工作,防止行业垄断、用户绑定,形成良性的产业生态。

      人工智能标准化白皮书(2018 版)全文阅读
    责任编辑: 晨凫
    0 0 0

    扫一扫下载91360客户端

  • 奋斗者第三期《我和我的艾德莱斯》 2019-09-14
  • 太钢精准发力坚决完成好定点扶贫任务 2019-09-14
  • 专业态度决定培训质量职业技能升华就业品质——2014年重庆市人力资源开发培训中心职业技能培训类概览 2019-09-07
  • 妻子把3个牌友约到家里玩 3岁儿子 妈妈和好多叔叔玩亲亲 2019-09-07
  • 我相信“交警雨中护送高考生”是真,“交警雨中护送高考生”反被该高考生家长投诉是假。 2019-09-05
  • 南通如皋为应对督察“回头看”违法掩埋危险废物 2019-08-29
  • “一带一路”论坛 值得世界期待 2019-08-29
  • “拖稿”也自信 美女作家落落来渝聊新书 2019-08-20
  • 曾感动过无数人母亲节,陪妈妈一起看场电影吧 2019-08-20
  • 山西繁峙强化督办 全流程跟踪监督信访件 2019-08-16
  • 各地聚焦学习十九大精神--新疆频道--人民网 2019-08-16
  • 前5月新能源汽车延续高速增长态势 销量增141.6% 2019-08-12
  • 世界杯夜不眠 合肥万达乐园打造霸都球迷首选集结地 2019-08-12
  • [网连中国]赛龙舟 包粽子 办诗会……全国各地品民俗迎端午 2019-07-28
  • 新疆旅游推介会亮相北京 2019-07-09
  • 宁夏11选5开奖结果走势图 安卓手机捕鱼游戏 cc网投国际登录 江西时时彩能赚钱 电子游戏业三巨头都是谁 今晚3d试机号分析汇总 双色球开第19070期 双色球预测爱彩网 福彩3D六码复式有多少注 混合过关三串一 内蒙古快3走势图和尾 最新广西快乐双彩开奖走势图 复式平码3中3资料 篮球投注 HOME-好彩1预测广东